Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М1(x1, y1, z1), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы и коллинеарны, поэтому найдётся такое число t, что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М, лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что , и отсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x, y и z и точка М перемещается по прямой.

Пример 13

Составить параметрические уравнения прямой по точке и направляющему вектору

Решение закончилось, не успев начаться:

Параметр «тэ» может принимать любые значения от «минус бесконечности» до «плюс бесконечности», и каждому значению параметра соответствует конкретная точка плоскости. Например, если , то получаем точку .

Обратная задача: как проверить, будет ли точка условия принадлежать данной прямой?

Подставим координаты точки в полученные параметрические уравнения:

Из обоих уравнений следует, что , то есть, система совместна и имеет единственное решение.

Рассмотрим более содержательные задания:

Пример 14

Составить параметрические уравнения прямой

Решение: По условию прямая задана в общем виде. Для того чтобы составить параметрические уравнения прямой, нужно знать её направляющий вектор и какую-нибудь точку, принадлежащую данной прямой.

Найдём направляющий вектор:

Теперь нужно найти какую-нибудь точку, принадлежащую прямой (подойдёт любая), в этих целях общее уравнение удобно переписать в виде уравнения с угловым коэффициентом:

Напрашивается, конечно, точка

Составим параметрические уравнения прямой:

Ответ: