В конце XIX столетия было установлено, что свет есть распространяющиеся в пространстве электромагнитные волны. На основе общих свойств волновых процессов объяснили такие оптические явления как интерференция света, дифракция света, поляризация света и др.

Однако, уже в начале ХХ века при исследовании взаимодействия света с веществом были обнаружены такие оптические явления как фотоэффект, эффект Комптона, фотохимические реакции и др. Для объяснения этих явлений представления о том, что свет есть распространяющиеся в пространстве электромагнитные волны, оказались несостоятельными. Объясняя явление фотоэффекта, в 1905 г. Эйнштейн выдвинул корпускулярную теорию света, которая, развивая идеи Ньютона о световых корпускулах, рассматривала свет как поток большого числа частиц, названных фотонами. Фотонная теория света легко объяснила все качественные и количественные закономерности явлений квантовой оптики.

Представления об электромагнитной волне и представления о потоке частиц исключают друг друга. Световая волна представляет собой нелокализованное электромагнитное поле, распределенное по пространству. Объемная плотность энергии электромагнитного поля волны, пропорциональная квадрату ее амплитуды, может изменяться на сколь угодно малую величину, то есть непрерывно. В отличие от волны, фотон, как световая частица, в данный момент времени локализован вблизи некоторой точки пространства и со временем перемещается в пространстве. Световая энергия в такой модели изменяется не непрерывно, а только дискретно, оставаясь всегда кратной минимальной порции (кванту) энергии, которую несет одиночный фотон.

Оказалось, что свет есть материальный объект, обладающий как волновыми, так и корпускулярными свойствами. В различных физических процессах эти свойства могут проявляться в различной степени. При определенных условиях, то есть в ряде оптических явлений, свет проявляет свои волновые свойства. В этих случаях мы должны рассматривать свет как электромагнитные волны. В других оптических явлениях свет проявляет свои корпускулярные свойства, и тогда его следует представлять как поток фотонов.

Существуют оптические явления, которые могут быть объяснены качественно и количественно как волновой, так и корпускулярной теориями света. Так, например, обе эти теории приводят к одинаковым соотношениям для давления, оказываемого светом при падении его на вещество. Это объясняется тем, что любая модель, и волновая, и корпускулярная учитывает наличие у света таких материальных характеристик как энергия, масса, импульс.

Итак, в результате углубления представлений о природе света, выяснилось, что свет обладает двойственной природой, получившей название корпускулярно-волнового дуализма света. С некоторыми объектами свет взаимодействует как волна, с другими - подобно потоку частиц. И хотя эти картины даже противоположны друг другу, одна картина дополняет другую. "Противоположности не противоречия, а дополнения" - гласит девиз Н.Бора.

Спор волновой и корпускулярной теорий света не привел ни к окончательной победе, ни к поражению какой-либо одной из них. В этом споре родилось качественно новое понимание природы света, объединяющее эти теории в единое целое.

В физике свет оказался первым объектом, у которого была обнаружена двойственная, корпускулярно-волновая природа. Дальнейшее развитие физики значительно расширило класс таких объектов.

В заключение укажем, что еще более тесно волны и частицы света можно связать, если предположить, что движение фотона подчиняется статистическим вероятностным законам, которые определяются волновым электромагнитным полем. Действительно, будем считать, что квадрат амплитуды электромагнитной волны, то есть ее интенсивность определяет в каждой точке пространства вероятность попадания в нее фотона и, следовательно, концентрацию фотонов в этой точке светового потока. Тогда явление интерференции света, проходящего через экран с двумя щелями, можно объяснить и с точки зрения корпускулярной теории света. При падении на экран одной световой волны вероятность попадания фотона в различные точки экрана одинакова, и мы наблюдаем равномерную освещенность экрана. При прохождении света через две щели вероятность попадания фотона в различных точках экрана изменяется. В местах интерференционных максимумов эта вероятность резко увеличивается, а в местах интерференционных минимумов - уменьшается. Тем самым, поток фотонов перераспределяется в пространстве и этим перераспределением управляет волновое поле.

Такой способ объединения корпускулярных и волновых свойств материальных объектов, когда с помощью волн мы описываем движение частиц, лежит в основе квантовой механики, к изложению основных положений которой мы приступим в следующих главах.